If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-12m+4=0
a = 3; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·3·4
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{6}}{2*3}=\frac{12-4\sqrt{6}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{6}}{2*3}=\frac{12+4\sqrt{6}}{6} $
| 32x=72 | | 3(x+4)=x-13 | | 3(12−x)=51 | | -60=-4(x-10) | | x−1/2−2=−8 | | 0.15x=12 | | 3(a+8)=5a+4 | | 9y=3600 | | 28=5y+y | | y=5y+28 | | 5x5=90 | | 18=4(x+9) | | -4x+1+21x=5x-3 | | 7x-25=15 | | 2p+30=180 | | F(x)=3x^2+12x=1 | | 2(4y^2-2y+1)=0 | | 2y(2y-1)=-1 | | 5(m-12)-6(m-10)=1 | | 2x-14=4x+44 | | 5m-60-6m-60=1 | | 8m+6=79 | | 40=3y+7y | | 11x19=20 | | 11x-20=21 | | 49x-24=25 | | 49x-23=24 | | 49x-22=23 | | 49x-21=22 | | 49x-20=21 | | 49x-19=20 | | 49x-18=19 |